C5 315-02 Lab Intr. to Digital Design
Digital Design
Analog \rightarrow Digital

wires
devices \rightarrow gates

$c_{0}^{c} d e r=a \& b$
bodice $r=a \cdot b$
algebra

Not $a-$ DoL

$$
r=a \mid 6
$$

$$
r=\sim a
$$

$$
r=a+b
$$

$$
r=\bar{a}
$$

Logic $r=a \wedge b$
$r=a \vee b$
$r=7 a$

a	b	r
0	0	0
0	1	0
1	0	0
1	1	1

a	b	r
0	0	0
0	1	1
1	0	1
1	1	1

a	r
0	1
1	0

$$
r=(a \cdot b)+(c \cdot d)
$$

Abstraction

Goal

Sum-of-products
som of tu. 1-bit numbers

$$
\begin{aligned}
& a=0=1 \\
& \begin{aligned}
\text { sum } & =(\overline{0} \cdot 1)+(0.7) \\
& =(1 \cdot 1)+(0) \\
& =(1 \cdot 1) \\
& =1
\end{aligned}
\end{aligned}
$$

product term

$$
\text { sum }=0
$$

Sum-of-products

1) build truth table
2) Identify rows with output 1
3) Construct product (.) terms for cachrow
a) don't invert if input is 1
b) invert if input is 0
4) sum (t) all product terms

1 bit full adder

